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Statistics of Derived Intensities 
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The variance of diffractometer-collected diffraction intensities is discussed in terms of instrumental 
instability and uncertainties in the parameter used to bring the intensities to a common scale. It is 
shown that the inconsistent and]or divergent behavior of the reflections used as standards contributes 
in a major way to the uncertainty in the scaling parameter and can often account for the largest por- 
tion of the variance in excess of the Poisson contribution for reflections with large intensities. 

Introduction 

Intensity data from counter techniques are expected on 
theoretical grounds to follow the Poisson distribution. 
They should therefore have variances equal to the total 
counts in each measurement. It has been found, how- 
ever, that the variances of the measurements within a 
crystallographic data set are larger than the measured 
counts. At least three observations exist which support 
this statement: 

(I) Multiple measurements of intense reflections in a 
data set agree with each other less well than predicted, 
if considerable time elapses between measurements; 

(2) At convergence of least-squares refinement the 
observed and calculated data for the more intense re- 
flections disagree more strongly than one might predict 
using Poisson statistics, and; 

(3) the standard error of fit determined from least- 
squares refinement is usually greater than 1.0 if Poisson 
statistics variances are used. 

* Present address: Department of Chemistry, Washington 
State University, Pullman, WA 99163, U.S.A. 

Observation 3 is, of course, model dependent while 
observation 2 is at least potentially model dependent. 
The largest discrepancies, however, are commonly 
found among the more intense data. This distribution 
would seem to have sources other than the model. 
Many workers (e.g., Busing & Levy, 1957; Peterson & 
Levy, 1957; Stout & Jensen, 1968, p. 456) have included 
in the calculation of the variances, S z, of the intensity 
data, a term proportional to the square of total counts, 
T, or net counts, I: 

e.g., S2(I) = T+ p212. (1) 

The factor P has been termed the 'instability con- 
stant' by some workers and the 'ignorance factor' 
(Corfield, Doedens & Ibers, 1967) by others. It is 
common practice to use 0.01 to 0.05 for the value of P. 
The larger values are usually chosen for crystals which 
show marked decomposition. 

Several rationalizations have been advanced for the 
use of equation (1): 

(1) It reduces the weights used for intense reflections 
in least-squares refinement (but any factor which is an 



246 STATISTICS OF D E R I V E D  I N T E N S I T I E S  

increasing function of intensity would have a similar 
effect); 

(2) It 'accounts for uncorrected effects' such as 
absorption (Peterson & Levy, 1957; McGinnety, 
Doedens & Ibers, 1967) (but there is no guarantee that 
these will affect predominantly the intense reflections, 
and, of course, no weighting scheme can compensate 
for any systematic error such as absorption) and; 

(3) It can be used to reduce the standard error of 
fit to 1.0 (Corfield et al., 1967) (but there are an infinity 
of functions which would have this effect). 

Three justifications for the form of (1) can be 
advanced, if the total counts are an underestimation of 
the variance: 

(1) The PZIZ term is the correct form for the contri- 
bution to the variance due to instrumental instability* 
(Busing & Levy, 1957; Peterson & Levy, 1957). 

(2) The PzIz  term is the correct form for some 
neglected contribution or contributions to the variance, 
o r ;  

(3) The PzIz  term is the second term in a Taylor 
series approximation to the variance. 

It will be demonstrated below that uncertainties in 
the scaling parameter used to put a data set on a single 
scale contribute a term to the variance which, like the 
instrumental instability term, involves the square of the 
net intensity. In many cases these two terms when 
added together account for the commonly used magni- 
tudes of P. 

I. The instability constant 

The multiple measurements of standard reflections 
throughout the time span of data collection provide a 
convenient way of estimating the instability constant, 
P. 

The measurements of the intensities, J~, of standard 
i at various times during the irradiation of a crystal 
may be used to estimate a function or composite func- 
tion, f~, which approximates Ji as a function of time. 
This function yields an estimate of the intensity at 
time zero, j0, and a scaling function, ki=-J°/f i .  The 
observed scatter in the J~ about the functions f~ are 
now used to estimate P. The total ):,z is calculated for 
each standard with the assumption that the functions 
f~ give the correct values of the intensities, and the con- 
tribution from Poisson statistics is subtracted to leave 
the residual variance. Of course, for this procedure to 
be valid it is necessary that the number of observations 
Ji be large compared to the number of degrees of 
freedom lost in determining f~. 

From equation (1), for all N observations of the ith 
standard, we predict the total squared scatter expected 

* The 12 dependence of the instrumental instability factor 
has been observed experimentally. It can be justified in terms 
of the expectation that variations in instrumental parameters 
will be normally distributed about their mean values (central- 
limit theorem) and give ~ise to constant relative errors in the 
observed intensities, i.e. (a(I)/l)  =constant. 

for the observed intensities about any trend: 

N lV N 

2 S~,= 2 T, j+P~ 2 J{J" 
j = l  j = l  j = l  

The observed scatter is given by 

N 

3 = 1  

Assuming now that (1) is the correct form for the 
sample variance S2(I) 

o r  

J J 

P ~ -  J (2) 

.t 

The values of the P~ will have components due to any 
fluctuations in I which arise in the experimental chain: 
source, crystal, detector. In addition, the P~ contain 
any differences due to discrepancies between the fitting 
functionf~ and the parent function. For stable crystals 
the P~ tend to be characteristic of the diffractometer. At 
the University of Washington the values are usually in 
the range Pi=0.004 to 0.008 (card-controlled Picker 
diffractometer). 

II. Uncertainty of the scaling parameter 

In general, there are different f~ for each of the i 
standard reflections leading to different scaling func- 
tions ki. In the absence of other information (the usual 
case), the best approximation to the correct scaling 
parameter for a general reflection in the data set is an 
appropriate average of the.f~ evaluated at the time the 
general reflection was collected (e.g., see McGinnety, 
Doedens & Ibers, 1967; Stout & Jensen, 1968, p. 194; 
Ibers, 1969). Although the failure of thefi to agree may 
be highly systematic (the intensities of the standard re- 
flections frequently change according to different func- 
tions), it seems reasonable to accept this lack of agree- 
ment as a measure of the uncertainty of the overall 
scaling factor at some particular time. Restated in a 
statistical jargon: the variance of the measured 
standard reflections, taken as a group, is our best 
estimate of the behavior of all the data. 

If the assumption just stated is valid, the contribu- 
tion of the several standard reflections, considered as a 
group, to the variance in the intensity data may now be 
calculated. Taking Kto be some average function rep- 
resenting the population k~, then for any particular 
reflection, collected at time t, we have 

I ° = Klob~ (3) 
and 
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a2(i0)=i02 f lo(K)\  2 (a(Iob0~ 2-[ 
;o s ; J '  

(4) 

where K is evaluated at time t and covariance terms are 
neglected. 

We examine now the sources of error. K(t) contains 
jo and fi(t).  The j0 and f~(t) are calculated quantities 
and their uncertainties arise from the errors in the Ji 
and from the procedure for determining the function ft. 
The J~ and Iobs are measured quantities and their 
errors derive from counting statistics and experimental 
instabilities. 

The term a(Iobs) may be estimated from equation (1). 
The sample variance of the k~ at time t may be cal- 
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Fig. 1. Contributions to the variance of I °. 

culated by 
1 M 

SZ(K) = ~---Z~ [ ~ ( K - k , )  2] (5) 

where i runs over the M scaling functions determined 
from the M standards. 

HI. Variance of the scaled intensity, I ° 

Equation (4) may be rewritten as 

a2(I °) = I2ob~aZ(K) + KZaZ(Iobs) 
2 2 2 2 2 2 =IobsS ( K ) + K  T + K  P Iob, (6) 

by substituting sample variance S z for the population 
variance a z. The last term of equation (6) is widely used 
(with inflated P values) in estimating the standard 
deviations of intensity data, but the first seems never 
to have been mentioned. Although there are occa- 
sional reports of standard deviations of scaling param- 
eters (Ibers, 1969; Ammon, Watts & Stewart, 1970), 
we have found no reports of the propagation of these 
uncertainties into the estimated standard deviations of 
the reflections' intensities. 

In the case of a highly stable crystal, the major 
sources of error are statistical errors in the measure- 
ments and the instrumental variation. One would ex- 
pect a single function to fit a / /of  the J~ simultaneously. 
For the case of an unstable crystal, however, the 
divergence in the f~ and hence in the ki usually be- 
comes increasingly important as the total irradiation 
time increases. It should be noted that crystals which 
do not show an overall decrease in intensity often 
exhibit some divergence of the various functions f~. 
Even though the scaling parameter K may remain 1.0, 
it will still have non-zero and increasing variance. The 
general result is that a value of I ° determined from 
measurements made near the endof  a data set is more 
uncertain than if it were determined from measure- 
ments made near the beginning. 

While for a moderately intense reflection the first 
term of (6) is initially small compared to the last term, 

Table 1. Fractional variance computed as a function of  time for a medium intense reflection 

[Standard 2 Fe(TIM) (CO) (CHaCN) (PF6)2] 
Contributions to the variance are graphed in Fig. 1. 

Poisson Instability Scale factor Total 
t K2~bs KVI--~b~ K2p2I~bs KP~b,  $2I 2 S~bs $2(I °) S(I°) 

Fraction of relative (10) 2 I ° (1°) 2 I ° (I°) z I ° (1°) 2 I ° 
data units x l 0  s x 102 x l0 s x 102 x l0 s x 10 z x l0 s x 102 

0 0 1-478 0.3845 6.400 0.8000 0 0 7-878 0.8876 
0.09 1016 1.529 0.3910 6"400 0.8000 0-882 0.2970 8.811 0-9387 
0"14 1516 1"526 0"3906 6"400 0"8000 6"188 0"7866 14"114 1"188 
0"26 2809 1"554 0"3942 6"400 0"8000 13"57 1"165 21-52 1"467 
0"31 3361 1"571 0"3964 6"400 0"8000 26"93 1"641 34"90 1"868 
0-37 3975 1"554 0"3942 6"400 0"8000 33"31 1"825 41"26 2"031 
0"50 5410 1"603 0"4003 6"400 0"8000 65"00 2"550 73"00 2"702 
0"75 8135 1"631 0-4039 6"400 0"8000 141"2 3"758 149"2 3"863 
1"00 10820 1-777 0-4216 6"400 0-8000 274"6 5-240 282"8 5"31g 
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it can become one to two orders of  magnitude larger 
than the last by the end of  data  collection (see Table 1). 

Results 

Table 2 shows the results of  analyzing data  collected 
from two crystals at the Universi ty of  Washington.  
The multiple observations of  each standard were fit by 
a linear function. Crystal 1 showed some decomposi- 
tion with divergent behavior of  the standards. The first 
da ta  set for crystal 2 has large P and S(K) resulting 
f rom a defective capacitor in the power supply of  the 
counting circuitry. The capaci tor  was replaced and the 
second data  set from crystal 2 was collected. Crystal 2 
is judged to be a very stable crystal. In addition, the 

Table 2. Linear f i t  o f  counts as a .function o f  time for 
standard reflections: C = A + Bt 

Crystal 1 Fe(TIM) (CO) (CH3CN) (PF6)z 
tm.~= 10821 (233 h exposure) /5=0.008 

Standard Observations A B k~max 
1 63 136820 -2"21 1"21 
2 63 66920 -0-84 1"16 
3 63 128669 - 1"63 1-16 
4 63 310420 -2.23 1.08 
5 63 206117 -2"25 1"13 
6 63 2147639 -26"33 1"15 
7 63 569719 -4"03 1"08 
8 63 1404810 - 16"53 1"15 
9 62 49103 -0"05 1"01 

Kmax=l'126 S(Kmax)=0.059 S(Kmax)/eKmax=6"55 

Crystal 2 Fe(TIM) 
tmax=3630 (81 h exposure) /5=0-024 

(CH3CN)z (PF6)z Data set I 

Standard Observations A B kimax 
1 18 37185 0.41 0.96 
2 21 14299 0.21 0.95 
3 21 16506 -0.04 1.01 
4 20 16695 -0.00 1.00 
5 21 23676 -0.07 1.01 
6 20 7046 0.04 0.98 
7 21 33393 -0.19 1.02 

Kmax=0"990 S(Kmax)=0"027 S(Kmax)/eKmax=l'14 

Crystal 2 Data set 2 
tmax=3807 (85 h exposure)/5=0.001 

Standard Observations A B k~max 
1 18 16015 0.04 0.991 
2 20 55237 -0.15 1.010 
3 20 114090 -0.52 1.018 
4 18 115113 -0.29 1.010 
5 19 86721 -0.28 1.012 
6 18 41511 -0.08 1.007 
7 19 778773 -1.98 1.010 
8 20 7642 -0.01 1.005 
9 20 1709461 1.14 0.997 

10 17 153822 -0.96 1.024 
11 17 828454 1.85 0.992 
12 19 17376 -0.09 1.020 
13 19 17905 -0.12 1.026 
14 19 115928 -0.44 1.015 
15 19 25230 -0.01 1.002 
16 19 34929 -0-17 1-019 

gma~= 1.010 S(Kmax) = 0"010 S(Kmax)/PKmax=9"90 

repaired diffractometer showed excellent instrumental  
stability. 

The results suggest the following technique for 
monitoring crystal and instrumental instability: 

(1) A rather  large number]" of  s tandard reflections 
should be measured several times throughout  the 
period of  data  collection. These reflections should be a 
representative sample of  the data  being collected and 
thus should exhibit a range of  intensities and be 
distributed throughout  the region of  reciprocal space 
spanning the experiment. These measurements then 
constitute a data  base for analyzing the scaling param-  
eter. 

(2) A small subset of the total s tandard set should be 
measured frequently during the data  collection in 
order to assess the overall status of  the experiment. At  
least one fairly intense reflection should be included in 
the subset to be used in calculating the experimental 
instability constant.  

Summary 

The central theme of this paper  is: how can the un- 
certainties inherent in the collection of  X-ray  data  be 
assessed? The usual procedure with regard to guessing 
' ignorance factors '  seems to be yielding a 'good'  value. 
We note that  for crystal 1, the sum ofSE(K)and  K2p2is 
7.95 x 10 -4 when evaluated at completion of  ha l f  of  
the data  set. This corresponds to an 'inflated' P of  
0.028, a value one might take to be reasonable for a 
crystal which shows some decomposition. The ' ignor- 
ance factor '  approach,  however, completely ignores the 
time dependence of  the uncertainty arising from the 
necessity of  placing the data  on a common scale. 

The X-ray experinaent itself frequently perturbs the 
crystal significantly and systematically. We emphasize 
that  it is the inconsistent and/or  divergent behavior of  
the s tandard reflections which contributes in a major  
way to the uncertainty in the scaling parameter  and 
often accounts for the largest portion of  the variance 
in excess of  the Poisson contribution for reflections 
with large intensities. Furthermore,  the time de- 
pendence of  the scaling factor and its uncertainty be- 
comes an important  factor in experimental design. I f  
questions are being asked which largely have their 
answers in a subset of  the da ta  (e.g., questions about  
bonding electron density]'), then it is wise to collect that  

* The IUCr's recommendation (S. C. Abrahams, 1973) of 
three strong, three medium, and three weak reflections 
distributed throughout reciprocal space would seem to be the 
minimum number of standard reflections needed. 

t Radiation damage may initially manifest itself as an in- 
crease in crystal mosaicity. The resulting decrease in extinction 
would primarily influence strong, low-angle reflections. Thus 
it would be important in attempting to collect data containing 
information about bonding electron density, to monitor several 
strong, low-angle reflections. The pertinent data could then be 
collected after any initial period of rapid change in extinction. 
This procedure would lead to lower extinction corrections and 
a more self-consistent set of data. 
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subset first. This procedure insures maximum self- 
consistency within the subset of interest. 

Other implications also arise. Suppose that as one 
monitors the several standard reflections, one finds 
significantly divergent behavior resulting in increasing 
S2(K). What might one choose to do short of 
mounting a fresh crystal? Perhaps the data can be 
significantly improved by measuring backgrounds for 
shorter periods and/or by using faster scan rates. The 
answers to such questions lie in the intelligent use of 
standard analysis as a feedback loop in experimental 
design. It is not hard to imagine in this age of mini- 
computer-controlled experiments a diffractometer pro- 
grammed to ask and answer such questions. 
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The Debye-Waller Factors of the Rubidium and Cesium Halides 
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(Received 9 July 1974; accepted 8 November 1974) 

Computed mean-square displacements and Debye-Waller Br factors, derived using the deformation 
dipole model, are reported for the rubidium and cesium halides at 4-2, 80, and 300 °K. Experimental 
X-ray diffraction Debye-Waller factors, obtained at 300°K, are reported for CsCI, CsBr, and CsI. 
The calculated BK values are compared with these and other experimental values wherever such data 
exist. The differences between calculated and measured values at 4.2°K are not large but in three out 
of four cases lie outside the small experimental uncertainties quoted. At 300°K, on the other hand, 
the differences tend to be larger, but in about half of the cases are less than the experimental uncertainty. 

Introduction 

The mean-square displacements of ions in the rubidium 
halides have been calculated by Govindarajan (1973) 
using a shell model where 11 to 14 parameters are fitted 
to the measured phonon dispersion curves. The Debye- 
Waller factors have not so far been measured for all 
of these eight crystals. However, Hafemeister, De Pas- 
quali & De Waard (1964) have measured the recoilless 
fraction f~ for the I -  ion in several alkali halide crys- 
tals at 80°K using the M6ssbauer effect, and Boyle & 
Perlow ~1966) have made similar measurements at 
4-2°K for the Cs + ion in the cesium halides. Barnea 
& Post (1966) have measured B~: values for Cs ÷ and 
C1- ions in CsC1. Recently Beaver & Weymouth 

(Beaver, 1974) have measured BK values on powder 
samples of CsC1, CsBr, and CsI at 300°K using X-ray 
diffraction measurements. 

The purpose of this paper is to compare the meas- 
ured values and computed values that are based on 
lattice-dynamical models which have fewer param- 
eters, and fit the dispersion curves equally well. More- 
over the parameters are determined mainly by fitting 
to macroscopic data (e.g., static and high-frequency 
dielectric constants). Thus, although the calculated dis- 
persion curves are mainly theoretical predictions, their 
agreement with experiment indicates that the models 
are producing dynamical matrices which are probably 
good for any phonon wave vector and not merely for 
those lying along a restricted class of high-symmetry 


